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Summary. A basic voltage-dependent conformational transition mechanism is pro- 
posed. It comprises one relatively fast conversion between two individual states which are 
comparatively slowly coupled with a third state. Having introduced voltage as an 
additional parameter of state, standard methods of thermodynamics and rate theory are 
employed to describe the equilibrium and kinetic behavior of the system. In particular, a 
quantitative discussion is given regarding the asymmetrical displacement currents gener- 
ated by switching on and off a voltage pulse. Effects of temperature, pulse duration, and 
application of a conditioning prepulse are examined. The results provide a compre- 
hensive basis for a quantitative analysis of pertinent experimental work. The so far 
presented measuring data can indeed be very well described along these lines. 

The sodium and potassium permeabilities through nerve membranes 
are controlled by the membrane potential, V= ~bin-~bex (the ~b referring 
to the electric potential in the cell interior and exterior, respectively). 
This gating effect has been quantitatively described by the phenomeno- 
logical equations of Hodgkin and Huxley [-1952]. Its molecular mecha- 
nism is so far not known. At any rate, however, it should involve virtual 
transverse displacements of charges associated with the gating structures. 

. These imply small nonlinear capacitance currents when voltage-induced 
changes of the degree of permeability occur. Some years ago it has 
indeed been possible for the first time to detect such asymmetry currents 
under conditions where the much greater ionic currents are largely 
eliminated (Armstrong & Bezanilla, 1973; Keynes & Rojas, 1973). Al- 
though the now available data are inconsistent with a straight-forward 
interpretation according to the Hodgkin-Huxley approach, they nev- 
ertheless clearly indicate some kind of relation to the actual gating 
mechanism (see, e.g., Ulbricht, 1977). 
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The gating processes as well as the asymmetry currents reflect fairly 
fast molecular events with distinct saturation in the accessible voltage 
range. As pointed out in detail in the preceding article (Schwarz, 1978), 
such properties are found to be quite unreasonable quantitatively if one 
assumes a purely electromechanical mechanism (i.e., a transverse motion 
of charged or dipolar particles directly caused by the field). They are well 
compatible, however, with field-induced structural rearrangements. In 
fact, these considerations suggest that the physical basis of any voltage- 
dependent transition in a biological membrane may primarily be seen in 
the influence of the field on a functional chemical conversion. The 
underlying equilibrium will generally be pushed towards the state of 
greater overall dipole moment parallel to the field (Schwarz, 1977). This 
chemical field effect consequently implies an inherent transfer of dipolar 
charge, thus giving rise to an asymmetry current. 

Molecular models of voltage dependence along these lines generally 
have to be based on an appropriate reaction system. Depending on the 
dipolar properties of the chemical states involved, the respective equilib- 
rium and rate constants can be expressed as functions of the electric field. 
The complete quantitative analysis may then be developed by means of 
standard approaches used in chemical thermodynamics and reaction 
kinetics. For a one-step transition this has already been fully demon- 
strated and shown to account for certain simple asymmetry current 
data (Schwarz, 1978). 

There is an apparent diversity of voltage-dependent effects even in the 
same membrane. This indicates a variety of field-induced steps which 
could be independent or may be coupled with each other. A relatively 
uncomplicated situation was encountered in switching on short voltage 
pulses (around 1 msec) to squid axon membranes. The asymmetry cur- 
rents could essentially be described by a single exponential time function 
and all the transferred charge, Qon, is displaced back once the pulse is 
switched off, i.e., Qoff=Qon (Keynes & Rojas, 1974; Meves, 1974). A 
longer prepulse shortly before the measuring pulses depresses both 
current amplitude and charge transfer (Bezanilla & Armstrong, 1975; 
Armstrong & Bezanilla, 1977; Meres & Vogel, 1977a). These studies also 
revealed an apparently exponential decrease of Qofe at measuring pulse 
durations longer than 1 msec (see Fig. 1). It will be shown in the present 
article that both inactivation phenomena as well as an apparent tempera- 
ture dependence of the saturating charge transfer can be quantitatively 
understood on the basis of transitions between three structural states. 
Two would have to convert into each other comparatively fast, whereas 
the third is much more slowly accessible. The latter will thus be virtually 
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Fig. 1. Measured charge transfer in a squid axon membrane (V: - 7 0 m V ~ + 2 0 m V ;  
8,5 ~ after Meves and Vogel (1977a). Depending on pulse duration, %, the apparent on- 
charge per unit area, Qon (filled points, dashed curves), very soon approaches a final value 
(relaxation time z 1 ~0.2msec). The corresponding off-charge, Qoff (open points), equals 
Qon only at about zp<0.5msec and then decreases approximately according to the 
exponential relation Qoff={13.6--7(l-e-~p/~2)} x 10 S C m - 2  where ~2=5msec (solid 

curve) 

frozen during any short voltage pulse so that it does not seem to exist 
then. Once longer pulses or temperature variations are applied, a re- 
distribution of "fast" and "slow" states will be induced. This naturally 
affects the amount  of charge involved in the primarily observable fast 
current component. 

Strictly speaking, it appears that actually more than three states take 
part in the voltage-dependent behavior of a squid axon membrane 
(Armstrong & Bezanilla, 1977; Bezanilla & Armstrong, 1977). Neverthe- 
less, the as yet presented main features of the asymmetry currents are 
rather well consistent with our basic model. More states may, however, 
be introduced later if necessary for refinements. 

General Approach to Structural Transitions Involving Three States 

We assume a macromolecular entity P whose individual states may 
undergo conversions according to the most general scheme 

(1) 
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The individual degree of transition, i.e., the relative amount of P~, is to be 
denoted 0 i (=[P/]/[P]). Introducing Kji as the apparent equilibrium 
constant for Pj~P~, we obviously have at equilibrium 

Oi.= 1 Kli 
+ K 1 2 + K 1 3  (2) 

(the bar indicating the equilibrium value; note that Kl1=1,  K13 
=KI2K23 ). Any equilibrium behavior of the system can therefore be 
quantitatively analyzed in terms of the respective effects on K12 and 

g13  �9 
Every individual Kji depends on external conditions by which it may 

be manipulated. Of particular interest are voltage, V, temperature, T, and 
the concentration, CA, of some free chemical agent A as far as this binds 
differently to the respective states. How such effects are quantified has 
been discussed in detail elsewhere (Schwarz, 1978). Let us first recall the 
influence of voltage. If Pj and P/have different dipole moments parallel to 
the acting field, the Kj~ will become a function of the field strength, E. In 
a biological membrane, integral macromolecular particles have practi- 
cally fixed orientations normal to the surfaces (Singer & Nicolson, 1972). 
Thus the relevant changes of dipole moment, #~, when going from P~ to 
P~ may be taken as constant parameters. It then follows 

where 

Kji = K~i exp {#jiE/k T} = exp {b~z(V- V~i)} (3) 

bj,=(#ji/d)/kT , Vj.~=A~- 1 - lnK~i (4a, b) 
bj~ 

(K ~ refers to the value at E=0,  d is the thickness of low conductance 
region of the membrane, A ~ stands for the voltage contributed by the 
two interfacial potentials). Note that Vj~ represents that voltage at which 
equal amounts of Pj and P~ would exist under equilibrium conditions. 

The principal contribution to the temperature effect must be expected 
to arise from K~i according to van't Hoffs relation. Taking into account 
also the interference of binding and structural equilibria the most essential 
points regarding external effects can be summarized explicitly in the 
expression 

I+KiCA exp ( V - - A ~ , ) - ~  T Tf Kj i -  1 + Kjc A 
(5) 
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(Ki is the binding constant of A to P/; the reaction enthalpy, A H~, and 
entropy, A S~, at zero-field and equal concentration of the involved 
states, are assumed to be independent of temperature; ~~ 
The temperature dependence of A ~ and of the Ki should ordinarily be 
negligible against that determined by A H~/. Possible voltage effects on 
the K~ will only be appreciable if the binding leads to an unusually great 
change of dipole moment. 

Expressing K12 and K13 according to Eq. (5) and introducing this 
into Eq. (2) thus permits us to describe the Oi as functions of the variables 
T, V, and c A. This may be too involved, however, if only the effect of 
comparatively small changes of a certain variable x is to be examined. In 
this case we conveniently employ partial derivatives. Generally we have 

80 i 8 lnK13 80 i = 80i 8 lnK12 t (6) 
8x 8 lnK12 8x 8 lnK,3 8x 

with 

80, =0/(1-0/) ;  802 - 803 - 0203 (7a, b) 
8 lnKl i  8 lnK13 8 lnK12 " 

Regarding voltage we easily gather from Eq. (3) that 

Furthermore, it follows 

8 inK,~ 
8v =b,/. (8) 

81nKli  AHli  
a T  R T  2 

(9) 

where this A H1/includes some comparatively small terms in addition to 
A H~ (Schwarz, 1978). Finally 

81nKli - K i - K  1 
OcA (l + Kica)(l + Kl  C A) 

(lO) 

as is easily derived from Eq. (4). 
The kinetics of the system is most simply based on first order rate 

constants, kji for Pj--*P~. Accordingly, we derive along standard lines 

dO z 
dt - (k~z+k21+k23)(Oa-O2)+(k32-k~2)(03-O3) ( l la)  

dO~3-=(k23 - k l  3)(02 - 02) - (k l  3 q-k32Avk31)(03 - 0 3 )  ( l l b )  
dt 
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Such a set of two inhomogeneous linear differential equations is of the 
ordinary type encountered in chemical relaxation kinetics. It can always 
be solved by means of well-known procedures (see, e.g., Schwarz, 1968). 
For time-independent equilibrium conditions the solution may be for- 
mulated as 

Oi=Oi-60oi{C~ie-'/~l +(1 -~i) e -t/~2} (12) 

where 60o~=0~-0o~ (0o~ being the initial value, i.e., the actual value at 
time t=0). The relaxation times v,, % turn out to be the negative 
reciprocal eigenvalues of the matrix associated with Eq. (11). Thus they 
are generally somewhat involved functions of all the rate constants. The 
amplitude parameters cq, e2, on the other hand, are determined by the 
initial and final values of the 0~ and, in addition, by the ratios of the rate 
of different steps. 

This implies a time dependence of the over-all dipole moment 

M = M l  + N(#I202 + #~303) 

(Mz being the value of M when all P are in state P~; N denotes the total 
number of P). Transitions between the P-states thus will result in a 
displacement current. Its density becomes 

1 aM c; f dO z dO3" ~ 
dt  - cl ) 12 clTJ 

(v=volume of the system, %=number  of P per area) which is readily 
evaluated once the appropriate expressions for the 0~ according to 
Eq. (12) have been calculated. 

Slow Coupling with the Third State 

If only one of the three steps in the cyclic scheme [Eq.(1)] is 
comparatively slow the two faster ones will essentially determine the 
actual time dependence (since the slow step can be easily by-passed). 
Therefore, two clearly separated fast and slow phases must arise from 
two states which are connected via a fast step but are both coupled fairly 
slowly with the third one. 

We may assume that the fast step is P1,-~-P2. Thus the rate constants 
are subject to 

k12, k21 ~k13, k31, k23, k32. 

This permits a rather straightforward solution of the relaxation Eq. (11). 
During a first phase after t=0,  only 02 changes while 03 practically 
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remains equal to 0o3. Hence 

with 

yielding 

dO 2 _ 1 
d t  2 1 

(02 - 02) q- k12 6 003 

1 
--=kl2q-k21 
2-1 

) K12 K12 . 6003 e -'/'1-+ .6003. 0 2 = 0 2 -  6002+ 1 q_K12 1 q-K12 

When t~>T1, however, P1 and P2 are virtually at equilibrium, i.e., 02/01 

=K12. This (together with 01+02+03=1  ) can be used to express the 
second differential equations in terms of 03 only. The result is 

where 

dO 3 _ 1 
(03-03) 

d t  T, 2 

1 =k13 . 1 K12 1 
2-2 I + K ~  q-k31-}-k23 lq-K12 4-k32~" 

Evidently r 1 and "E 2 are the two relaxation times which describe the 
kinetic behavior at any time. The amplitude factors are seen to be 

(Z 2 = 1 q K12 6003 
1+K12 6002' ~3 =0" 

Thus 

( g12 ) K12 
02=02- 6002-~ 1~-12 "6003 e-'l~lq 1 ~ 1 2  .6003 e-t/~a (13a) 

03 = 03 - 6003 e -t/~ (13 b) 

is the general and complete solution in case of comparatively slow access 
to P3. The corresponding displacement current density can then be 
derived as 

j=(Q1/.Cl) e t/rl q_(Q2/.c2 ) e-t/r2 (14) 
where 

K12 } 
QI= 6002q 1+K12" 6003 (Ixl2/d)cp 

Q2={ lff_Kl 2K12 (#12/d)q_(#13/d)} 6003 

(15a) 

cp. (15b) 
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The v~, -i7 2 as well as K12 refer to the effective equilibrium conditions. By 
integration up to t--+ oo we find that (2~, Q2 represent the final amounts 
of displaced charge per unit area which are associated with the fast and 
slow components Of Jon, respectively. 

Let us now turn to the displacement currents generated by switching 
on and off a rectangular voltage pulse described by 

on(t=0) V off(t=~p) 

In other words, the holding potential V o is suddenly increased to V which 
will be maintained for a time rp until V o is restored. 

First we shall consider the case in which the system has attained 
equilibrium before the pulse is applied. The on-current density ion can 
then be expressed by the corresponding charge parameters Q,, (22. These 
are directly obtained from Eq.(15) if the 60oi are set equal to the 
equilibrium changes 6 0 i =  0 i -  Ol ~ with the superscript (o) marking the 
value applicable at the holding potential. The total electric charge 
density transferred during the pulse becomes 

0.o.  = (~1 (1 - e -  ~/~*) + (~2 (1 - e -  ~/~2). 

Regarding the off-current, we must take into account that generally the 
system has not yet reached the new equilibrium at the moment of 
switching off. The appropriate actual degrees of transition, 01P), can be 
calculated by means of Eq. (13). The over-all changes upon return to 01 ~ 
are deduced to be 

K12 60a) (1 _ e-~/~l) 
- a 0 2  l+/G2 

K12 
q ~ 03 (1 - e-  ~p/~2) 

1+K12 

b 0(3 p) = 0(3 ~ - 0(3 p) = - 6 03 (1 - e- ,p/,2). 

Substituting them for the 6Ooi (and K~a~ i.e., the equilibrium constant at 
Vo, for K12 ) in Eq. (15) yields the individual displaced charge densities 
during the off-current: 

G - ( G  + 0 ){1 - 

(16a) 

(16b) 
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with a coupling charge parameter 

Q_~c = (~i \1 + 1 1 2  ] 112 ~ (~03(]'~121d)cp (16c) 

(the D-operator on the K12-term standing for the difference of the values 
effective at pulse voltage and holding potential, respectively). If t = 0 is 
now assigned to the end of the pulse, we have 

joff=(Q(l~ ~ e t/z[~ + (Q(2~ (~ e -t/z(2~ 

(note that the relaxation times ri ~ z~ ~ are determined by the holding 
potential). Accordingly, all the displaced charge (for t--, oo) amounts to 

Qi ~ +0 2 ~ --0on" 

In other words, the total off-charge cancels the total on-charge, as 
naturally would be expected. With regard to the on- and off-charges 
carried by the individual fast and slow current components, however, 
significant differences may be observed. 

Evaluation and Interpretation of Experimental Data 

In practice, the slow component of the displacement current may be 
difficult to detect. Its amplitude would become very much smaller than 
that of the fast component if Q2 is of the same order of magnitude as Q1 
or smaller. This is clearly demonstrated by the general expression 
[Eq. (14)] when taking into account the condition -c 2 >z 1. 

Under these circumstances the current appears largely as a purely 
exponential time function. It will, accordingly, make up all the measured 
asymmetry current, provided only the depolarizing pulse induces a fast 
transition. This complies with the findings in the case of the previously 
mentioned squid axon system of Meves and Vogel (1977a). From the 
respective data thus only the relaxation time ~1 is directly accessible. 
Consequently, the apparent charge transfer is essentially given by the Q1- 
term. Armstrong and Bezanilla (1977), on the other hand, have under 
certain conditions in addition observed a slow current component. 

Let us assume for the moment that essentially only the fast com- 
ponent is encountered. Then the apparent on-charge density when start- 
ing from equilibrium follows on the basis of Eqs. (15a) and (2) as 

Qon=C~(1K12 t(1-O(3~ 
+K12 ] 
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With regard to the effect of pulse duration, zp, and voltage, V, this 
naturally reflects the same behavior which has been ascertained for a 
single transition step. The fast relaxation time, ~t, as well as the 
displaced charge thus display the respective dependences on V as they 
have been derived before and found to agree with squid axon data 
(Schwarz, 1978). For zp >> 271 and sufficiently negative holding potential so 
that 0~ ~ = 0, we may accordingly write 

~where 

exp {b~z(V- V12)} r5 
~~  +exp {b12(V- V12)} 

Q~ (17a) 

Q ~ = (1 - 0(3 ~ (1~ 12/d) cp. (17 b) 

Obviously the parameters b12 and 1/12 as well as z~ are solely determined 
by the fast step. Its saturating charge transfer, Q o~, on the other hand, 
evidently depends also on the fraction of P locked up in the slowly 
coupled third conformational state. This is indeed easily intelligible since 
only P1 and P2 participate in the observed process (note that 1--03=01 

+ 02). 
According to Eq. (17b) any change of the initial 03-value must yield a 

corresponding change in the measured Q~. Such an effect is particularly 
to be expected upon variation of temperature. In fact, warming up a 
squid axon system appears to lead to an increase of the saturating on- 
charge (Kimura & Meres, 1977, and unpublished results). A quantitative 
analysis of this temperature effect is immediately carried out in the 
framework of our approach. It follows directly from Eq. (17b) that (at 
constant Vo) 

o) 
0 

d T  d T  "0oo 

with Q ~  p denoting the upper bound of Qoo, i.e., the amount 
displaced in the fast step in case of 0(3 ~ 0. Taking into account Eqs. (6), 
(7), and (9) and 0(2 ~ =0, we find 

dy AH13 (where y = Q ~ / Q O ) .  (18) 
d T  = - y ( 1 - y )  RT--~ ~- 

A 1 ~o increase of Qo~ per Kelvin is thus given if the product 0(3~ 
equals - 7  kJ/mol (at 280 K). By integration of Eq. (18) it follows 

1 
Q ~176 = 1 + B exp { - A H 13/R T}  = 1 - 0(3 ~ 
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Fig. 2. Temperature effect on the final Qon VS. V curve (see text). It is assumed that V 1= = 
-20mV, 0(30)=0.5 for T=280K, #12/d=8debye/A, AH12=AH13=-50kJ/mol,  %=3 
x 10 ~s m 2. Under these conditions the indicated substantial increases of Qoo and V~2 are 

induced by raising the temperature from 275 K to 285 K 

with B being independent of temperature (but still a function of Vo). For 
an evaluation of the three unknown parameters QO, B, and A H I 3  , 

measurements at a minimum of three temperatures are required. 

In addition to the effect on the amplitude of the Qon vs. V curve, there 

is also a temperature-induced shift of the curve along the voltage axis. 

According to our previous discussion of this point (Schwarz, 1978), we 
have here 

d V a 2 _ = [ d V ]  = (OlnK12/ •T)v  = Cp AH12 

d T  ~ 1~1==~ (OlnK12/~?V) T NAQ ~ T 

A graphic illustration of both effects can be found in Fig. 2. 

Natural ly the external pressure as well as the concentration of a 

chemically interacting agent may likewise affect the value of 0(3 ~ There- 
fore, variations of these physical quantities could also lead to analogous 

changes of Q o~ and V 12. 

We turn now to the current observable after switching off the pulse. 

The apparent charge density displaced back is to be defined as (~off. In 
case this is evaluated from the fast current component  only, we obtain in 
general according to Eq. (16a) 

0 o f f  = 0 o n  - -  Qe (1 - -  e ~'/~=). 
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Fig. 3. Theoretical course of Qoff as a function of pulse duration, zp, in comparison with 
Qon (z2=10zl; the dashed curve is the exponential extrapolation towards zp=0). This 

reflects the general situation represented by the experimental case of Fig. 1 

In other  words,  only at short  pulse durat ions,  "Cp~Z 2, the off-charge 

equals  the on-charge;  at longer pulses an exponent ia l  app roach  of  Qoff to 
a different value occurs (see Fig. 3). The  devia t ion be tween  the two 

extreme values can be wri t ten 

(~c=c5 (1 K12 ~ (0 3 -- 0(~ 
+ K l a ]  

In compar i son  with the m a x i m u m  on-current  we then have 

Qc/Qt = (03 - 0(30))/( 1 - 0(30)) �9 

The general  quant i ta t ive  behav ior  agrees very well with the q u o t e d  

results of  Meves  and Vogel  (1977a) where  "c2~5 msec. In their case as a 

first approximat ion"  K]~ 2 = 0 (V o = - 70 mV) and K 12 >~ 1 (V = + 20 mV). 
Thus  we have at pulse vol tage and 8.5 ~ 

k31.+.k23 + k 3 2 ~ 2 0 0 s e c  1. 

Fur thermore ,  f rom the pulse length dependence  of  (~off (Fig. 1) 

Qt = (1 - 0~3 ~ QO = 13.6 • 10 -5  C m 2 (19 a) 

and 
(~c-  - -(o) o _ . (19b) - ( 0 3 - 0 3  ) Q ~ - 7 . 0 . 1 0 - s  C m  - 2  



Analysis of Asymmetry Currents 161 

This clearly indicates that the fraction of P in the slowly coupled state P3 
increases at higher voltages. Absolute values of 03 can apparently not be 
evaluated as long as QO is not known. We have seen above that the latter 
quantity may be accessible from studies of the temperature dependence. 

On the other hand, we could, in principle, also gather the necessary 
information by means of following the dependence on the holding 
potential. The effect of V o in Q~ can be described analogously to that of 
T which has been treated above. This leads to the total differential of y 
= Q ~ / Q O  regarding both variables, namely, 

y(1 -y) 
dy= RT2 (AHI3dT+G( , 3/d)TdVo}. (20) 

(It must be emphasized that this applies to sufficiently negative holding 
potentials only where 0(2~ The apparent increase of y at higher 
temperatures implies a negative AH13 and a nonzero 0(3 ~ Changing V o 

will evidently support or counteract variations of the temperature de- 
pending on the signs of #13 and 6 V o. In particular, 6 V o may be selected to 
cancel out the effect of T. In first approximation it follows from Eq. (20) 
in this special case 

AH13 6 T  

(~V~ T 

Thus, with a likely ]./13>0 (see below), it needs an increase of V o to 
decrease Q oo correspondingly, whereas more negative holding potentials 
would lead to higher saturating charge transfer. The same applies if V o is 
held constant but the voltage of a long prepulse is varied accordingly, 
provided the time interval between the two pulses is sufficiently short, 
i.c., ~ r(2 ~ (see below). 

At a holding potential of - 7 0  mV, Armstrong and Bezanilla (1977, 
Figs. 3 and 9 l.c.) have observed a pulse duration dependence of the off- 
on charge ratio essentially equivalent to that of Meves and Vogel. It only 
reflects a somewhat faster decrease and approaches a smaller limiting 
value. The latter may be due to the fact that in these experiments an 
appreciable slow on-current component was involved so that the actual 
(~on becomes greater than the charge density carried by the fast com- 
ponent alone. While the authors do not see a slow off-current in these 
experiments, they observe one after decreasing V o to around - 1 5 0  mV. 
In the scope of our model the occurrence of these slow current phases 
can be interpreted by the physically reasonable feature of "c 2 to decrease 
considerably at extreme voltages [cf. the V-dependence of �9 in the one- 
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step model (Schwarz, 1978)]. According to Eq. (16a) and with "cp >>'q, the 
fast off-charge density is 

(Qoff) 1 = Q1 - ~)c( 1 - e-~p/~2) 

and because of Eq. (16b) the slow one becomes 

(Qoff)2 ---= (02  -q- Qc)(1 - e- ~,/~2). 

In other words, (Qoff)2 can  be expected to increase from zero up to an 
asymptotic limiting value, reflecting the same exponential time constant 
as the decrease o f  (Qoff)l .  Exactly this was found by Armstrong and 
Bezanilla (1977, Fig. 8./.c.).The total off-charge density would then be 
given as 

doff : 01 -~ Q2 (1 - e- ~p/~) 

which explains the presented asymptotic increase of the off-on charge 
ratio (---,1.2) (Fig. 9 I.c.) if the slow on-charge (at V=0mV)  is not 
included completely in the measured Qon- 

The Effect of a Pulse Preceding the Measurement 
of Displacement Current 

Instead of changing the characteristic parameters of the measuring 
pulse, those of a conditioning prepulse may be varied in order to analyze 
the behavior of the system. In particular, the voltage dependence of 03 
can, in principle, be evaluated in this way. 

The prepulse is to be applied to the system when it has attained 
equilibrium. The voltage will be raised from V o to V' during the time 

t interval -cp. Then it is switched back to V o for a time z" until the actual 
measuring pulse with Vo~ V is switched on. This is assumed to last for a 
time interval -cp as before (see Fig. 4 for the entire pulse program). As far 
as the prepulse is concerned, we have the same situation as discussed 
above. Regarding the measuring pulse, however, we must take into 
account that the transitions induced by the prepulse may not have 
completely faded away during the interval between the pulses. Thus, the 
prepulse generally alters the initial conditions of the system at the 
moment of switching on the main pulse, i.e., CS0oi:#cS0i. The appropriate 
values of 60og can, of course, be calculated by employing Eq. (13) with 
respect to the changes of 0~ during prepulse and subsequent fading. 
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Fig. 4. Typical time course of a degree of transition, 0, as induced by two consecutive 
pulses (prepulse: Vo~V', measuring pulse: Vo-~V ). It is assumed that the relaxation 
behavior involves a fast and a slow phase. The dashed lines represent the respective 

instantaneous equilibrium values, 0 

Inserting them in Eq. (15) yields for the displaced charge components  of 
the on-current  

Q1 = 0 ,  -- {0' ,  (1 - e-~/~i) _ 0,c( 1 _ e-9/~5)} e - < / C '  

- ( ~ c ( 1  - e ~ ) / ~ )  e - < / C '  

Q2 = Q2 - ( 0 2  + 0'~ - 0~)(t - e -~/~)  e-~"/'~~ 
where 

K12 ) 
0~c =c~ I + K ,  z (0'3-0(3~ ~ 

and all the dashed quantities refer to the values at prepulse voltage V'. 
Let us again suppose that  the measured on-charge density is essen- 

tially given by Q1 only. If in addi t ion the interval between the pulses is 
taken long enough so that  z(~~ z" we find for zp >> z 1 

Qon = Qon - Qc( 1 - e-  ~/~) e-  ~,,/~o>. 

By variation of "C'p and z" it should be possible to evaluate the parameters 
0o,,  Qc, "c'z, and z<a ~ In such a way the slow relaxation t ime z 2 and the 
fraction of slowly coupled state P3 would be accessible as a function of 
the voltage (of the prepulse). The 0 3 can be obtained from 0c determined 
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as a function of V'. In particular, choosing once more V o and V so that 
K lz >> 1 and ~12r"(~ ~ 1 apparently implies 

Qc = ( O'3 - O(3~ Q ~  . 

Inactivation of the displacement current is thus equivalent to an increase 
of 03 due to application of the prepulse voltage. According to the 
experimental data for squid axon this seems to be so in case of V' > V o. It 
indicates that for hyperpolarizing conditioning pulses (i.e., V '<  Vo) and 
0(~ 0, a negative value of (~c should be encountered, in other words, an 
activation of the displacement current. 

t ! We may extrapolate the on-charge towards z;, Tp>~'C2, .~(o) and z " ~ 0  
but take into account only measurements with r" >>'c(~ ~ This will, under 
the given circumstances, yield 

Q(o~x)=0on-(~c (1 -' o 1 + K'12 o = - 0 3 ) Q ~ =  Qoo 
1+K'12 +K'13 

1 -[-e blz(v'-Vlz) 

= 1 +eb12(v ' -v~2)+e bl*(v ' -v~)  QO.  

The general course of the Q(~,x~ vs. V '  curve depends primarily on the 
magnitudes of the individual dipole moments in relation to each other. It 
can, of course, always be assumed that/~12>0, but three different cases 
with respect to #13 have to be considered: 

1) if #13 >#12 the curve decreases steadily, exhibiting saturating val- 
ues QO (at V'---,- oQ) and 0 (at V'--,oc); 

2) if/~12 >/~13 >0, the curve runs through a minimum with a saturat- 
ing value of QO at both extremes of V'; 

3) if #13 < 0, the curves increase steadily exhibiting saturating values 0 
(at V'--+- c~) and QO (at V'--+c~). 

A more detailed illustration is given in Fig. 5. A plot of experimentally 
determined QIoCX~ vs. V '  would, therefore, permit a rather direct quanti- 
tative analysis of 03 and the involved parameters. 

In this context we should return to some relevant data of Armstrong 
and Bezanilla (1977). The fact that they see a posi t ive slow on-charge at 
positive V (where K12>>1) requires #13>#12 in our model as can be 
concluded from Eq. (15b). This then implies a steady increase of 03 with 
voltage. Apparently it reaches its saturating value of unity at about 
+ 10 mV since there is no difference of the limiting values of the above 
discussed off-on charge ratio between V= 10 and 50 mV, respectively (cf. 
Fig. 3 l.c.). In the same article prepulse experiments have been reported 
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Q(ex) . . . .  Q~ . . . . . .  on-' Z Z/ - - -  
T - 

3' 
- i , \ j  

~ Vlz = - 20 rnV 

- . ~  0.1 \ V13 = - 70 mV 

" " - ~ 1  I " ~ ' ~ 1  ~'...-.,I I I 1 
-100 0 100 

) V [rnVl 

Fig. 5. Three typical examples illustrating the dependence of the extrapolated on-charge, 
Q(o~n x) (see text) on the prepulse voltage V' (essentially reflecting 1 -  03 as a function of 

voltage) 

(upper part of Fig. 6 1.c.) (V= 30 mV). They seem to essentially satisfy our 
above conditions for extrapolation except that (i) ~" (= 0.7 msec) appears 
not to be negligible with regard to r(2 ~ and (ii) the slow charge transfer 
component is included in the measured results. Under these circum- 
stances the present model predicts 

Qon = (I'Ll 3/~L1 2) e -  z"/~(2~ ex) "Jr- (~L 1 3/d) Cp(1 - 0(3~ 

Accordingly, the charge transfer decreases steadily only until it takes at 
positive V' a nonzero limiting value just as exhibited by the experimental 
points in the quoted figure. 

The displacement current after switching off the measuring pulse may 
be calculated analogously. It turns out that in the general case 

Q 1 = - -  {Q1 (1 -- e- ~P/~') -- Qc(1 - e -  ~p/~=)} 

~2~ = - ( 0 2  + (~c)(1 - e -  ~ / ~ )  

Simplified relations may naturally be obtained by appropriate choice of 
experimental conditions. 
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Concluding Remarks 

The proposed three-state conformational transition model  apparently 
explains very well the generally observed behavior of asymmetry currents 

in squid axon membranes if voltage pulses in the millisecond range are 

applied. However,  for a complete quantitative examination of the theory 

in the light of the experimental data, more pertinent measurements are 

required. In particular, detailed temperature and voltage dependences 
with and without conditioning pulses would be desirable. Nevertheless, 

the great potential of the theoretical approach should already be ob- 

vious. Having introduced the voltage V (or the electric field strength, E, 

respectively) as an additional variable of state, standard methods of 

thermodynamics and reaction kinetics can be employed in order to 

develop a comprehensive quantitative picture of the system. 

Up  to now we have considered only one slowly coupled confor- 
mational state. This appears to suffice for the special experimental data 

so far considered. It may be noted that inactivation phenomena with 

much longer induction and recovery times in squid axon have been 

observed (Meves & Vogel, 1977b). These indicate the existence of further 

conformational  states which are even more slowly coupled than the one 

discussed above. Our model could, in principle, be readily extended to 

include them. 

This study has been supported by grant No. 3.4874).75 of the Swiss National Science 
Foundation. The author is indebted to Drs. K.D. Kniffki, H. Meves, and W. Vogel for 
stimulating discussions. 
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